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Tracking of synchronized chaotic systems with applications to communications
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~Received 12 December 1996!

In this paper, we examine the problem of the self-synchronizing chaotic receiver, extracting the parameters
of the transmitter system from the available transmitted signals and thereby achieving synchronization. Ascer-
taining the parameter equality will be an important issue in any practical implementation of a chaotic com-
munication system. We define a cost function whose iterative minimization allows the receiver to extract the
parameters. The method is illustrated for the Lorenz system and two coupled Lorenz systems. Last, we suggest
chaotic multiplexingas a possible application of the method.@S1063-651X~97!01707-8#

PACS number~s!: 05.45.1b, 43.72.1q
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The self-synchronization property possessed by a clas
chaotic systems@1,2# has been of great interest recently, e
pecially due to its possible application to communicatio
@3#. The synchronization requires that the parameters cha
terizing the transmitter dynamical system be closely matc
in the receiver system. By synchronization, we mean that
receiver follows the transmitter exactly, termed identic
synchronization~IS! in @11#. Unless explicitly stated, we wil
refer to IS as synchronization. In this paper, we illustrat
simple method that enables the receiver, initially ignoran
the transmitter parameters, to extract transmitter parame
to achieve synchronization. The transmitter dynamical s
tem, with the exception of the parameters to be estimate
assumed to be known to the receiver. The signals availab
the receiver are the driving or transmitted signals that ena
it to synchronize with the chaotic signals evolving at t
transmitter if the parameters of the transmitter and the
ceiver match.

Let the transmitter be given by

ẋ5f~x,at!,

where x,f(x)PRn or x5(x1 ,x2 , . . . ,xn) and f(x)5
„f 1(x), f 2(x), . . . ,f n(x)…, and f is such that a synchronizin
receiver is possible. The vectoratPRp is the parameter vec
tor characterizing the system. Without loss of generality,
the m transmitted signals bex1 , . . . ,xm . The full dimen-
sional receiver is given by

ẏ5g~x1 , . . . ,xm ,y,ar !,

wherey,gPRn and the receiver parameter vector isarPRp.
It is not necessary that the functiong be a replica off. This
may enhance synchronism for particular choices ofg @4#. In
the case of parameter match, i.e.,at5ar, the synchronization
is ensured, i.e.,uux2yuu →0 ast→`. This rate of synchro-
nization may be quite fast for some systems, such as
Lorenz system, where the rate is exponential@5#.

The problem that we now address is: can the rece
determine the transmitter parametersat from the available
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transmitted signals (x1 , . . . ,xm)? Carroll and Pecora@6# and
Kozlov et al. @7# address this problem for a single parame
estimation by defining acontrol law, a nonlinear control sys-
tem based on the error signals and of the form

ȧr5h~x12y1 , . . . ,xm2ym ,ar !.

Finding a functionh is specific to the transmitter-receive
system. We introduce a cost function whose iterative m
mization accomplishes the same task, though with consi
able simplicity. The cost functionT is defined based on th
error signals measurable at the receiver,ei(t)5xi(t)
2yi(t), (i51, . . . ,m), as

T~ar,t,t2!5(
i51

m E
t

t1t2
ei
2~ t !dt. ~1!

The transmitted signals are stored over the interval@ t2t1 ,t
1t2# and the receiver is driven using this stored data, and
error signals are used for the evaluation of the cost funct
The transmitter parameters are assumed to be slowly var
so that they can be assumed to be constant over the inte
@ t2t1 ,t1t2#. Brown et al. @8# define a measure of the syn
chronization error based onuux2yuu and report its monotonic
variation for small parameter difference, but such a funct
is not measurable at the receiver due to nonavailability of
transmitter state variables. In the case of parameter ma
cost function~referred to hereafter asT) is very close to zero
due to synchronization; otherwise, it is a positive quant
One can thus iteratively minimizeT over the receiver param
etersar, andT becoming very close to zero~less than some
e) is a simple test of convergence. It should be noted, ho
ever, that, depending on the nature of the parametersar to be
tracked, it is not necessary thatar5at be the only point
whereT becomes zero. This is because minimization ofT
ensures synchronization with the transmitted signals o
Such a case is shown by the following example. The Lore
transmitter system is given by

ẋ15s t~x22x1!; ẋ25r tx12x22x1x3 ;

ẋ35x1x22btx3 ~2!

and the receiver by
ia.
1242 © 1997 The American Physical Society
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ẏ15s r~y22y1!; ẏ25r rx12y22a1x1y3 ;

ẏ35a2x1y22bry3 . ~3!

In this case,T is a function of the error signale1(t)5
x1(t)2y1(t). Let (s r ,r r ,br)5 (s t ,r t ,bt) and let (a1 ,a2)
be the two receiver parameters modified untilT becomes
zero. It can easily be checked that fora251/a1, wherea1
Þ0, a change of variables ofy3 to a1y3 gives back the fully
matched synchronizing receiver, and henceT attains its glo-
bal minima of zero at an infinite number of poin
(a1,1/a1), although the parameters match only whena1
5a251. In such cases,at remains indeterminate, though
minimization of T will ensure synchronization with the
transmitted signals, which may be sufficient for applicatio
such as chaotic signal masking or chaotic digital commu
cation @9#.

We now comment on the various times,t,t1 ,t2, involved
in definition ~1!. The selection of timet is arbitrary. How-
ever, it is assumed that the transmitter system has come
of its transient due to its arbitrary initial conditions and r
sides on its attractor in the interval@ t2t1 ,t1t2#, a legiti-
mate assumption under which synchronization may occu
is desired thatT be independent of the receiver state varia
values at time (t2t1) or the initial conditions, which are se
arbitrarily whenT is evaluated. In case of matching param
eters, all error signalsei(t), due to difference in the trans
mitter and receiver state variables at time (t2t1), die down
due to synchronization. Though the error signals will n
become identically zero for mismatched parameters, t
may, however, become independent of the receiver in
conditions if timet1 is chosen to be large. This is essentia
due to the phenomenon of generalized synchronization~GS!
proposed by Rulkovet al. @10#, where, instead of following
the transmitter exactly, the receiver follows its fixed imag
i.e.,y5H(x), whereH is nonlinear in general. The necessa
and sufficient conditions for GS, given by Kocarev and P
litz @11#, are that the conditional Lyapunov exponents are
negative, or alternately that a Lyapunov function can be
fined for the mismatched receiver, the latter approach be
the more direct way. Thus, if these conditions are satis
for the receiver parameters, the error signals, and hencT,
become very nearly independent of the receiver initial c
ditions at time (t2t1) due to synchronization to a fixed im
age of the transmitter.

FIG. 1. Two error signals for different receiver initial condition
and unmatched parameters.
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The timet2 is chosen such that the synchronization w
the transmitted signals in the interval@ t,t1t2# ~due to mini-
mization of T) ensures synchronization for all time, an
hence for accurate parameter recovery. We observe the
malized standard deviation ofT ~i.e., the ratio of standard
deviation with its mean! as a function oft2, andt2 is chosen
such that this is small. The various readings for calculat
the standard deviation at a givent2 are taken by observing
T at varying t. Such a choice oft2 works quite well. We
comment here that we are currently investigating whet
one can choose at2 at a large standard deviation~possibly a
lower value than the above choice! and still recover the pa-
rameters accurately. About the nature of iterative algorith
since the derivatives of the cost function are not direc
available, one needs to choose a method where only
function evaluations are required. We used the downhill s
plex method in multidimensions@12#.

We now illustrate the method for the Lorenz transmitte
receiver system@see Eqs.~2! and ~3!#, where it is assumed
thata1 ,a251 and (s t ,r t ,bt) are the three parameters to b
estimated. First, we show thatT attains its global minima of
zero only in the case of parameter match, rather than
infinite number of points, as in the case of estimation
a1 ,a2. From the minimization ofT, x15y1, and henceẋ1
5 ẏ1; thus, y25(s r2s t)x1 /s r1s tx2 /s r . Differentiating
both sides, we get@r r2s tr t /s r1(s r2s t)(s t21)/s r
1s tx3 /s r2y3#x15(s r2s t)s tx2 /s r . Now it is possible to

FIG. 2. The normalized standard deviation of the cost funct
as a function oft2.

FIG. 3. The average percentage parameter mismatch as a
tion of iterations for~a! the Lorenz system and~b! two coupled
Lorenz systems.
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1244 56BRIEF REPORTS
choose a point on the chaotic attractor such thatx150 and
x2Þ0, where the right-hand side50, implying that s r
5s t . Hence, the left-hand side50 for all x1, so y35x3
1r r2r t . By differentiating, we get (br2bt)x35
br(r t2r r). For this to hold for allx3, (r r ,br)5(r t ,bt).

Let (s t ,r t ,bt) 5(16.0,45.6,4.0) and the initial choice o
the receiver parameters be (s r ,r r ,br)5(29.0,80.6,7.8). Fig-
ure 1 shows the error signale1(t) for two largely different
receiver initial conditions. The transmitter state variable v
ues at time (t2t1) are fixed at (x1 ,x2 ,x3)5
(212.1,5.3,59.8) and the two receiver initial conditions a
(y1 ,y2 ,y3)5(50,50,50),(250,250,250). Let y8 andy9 be
the two receiver trajectories emanating from different init
conditions at time (t2t1). By an analysis similar to the on
in the appendix of@5#, it can be shown that these two traje
tories approach each other at least exponentially and
uy182y19u decreases at least as m
$O(e2sr t),O(e2br t),O(e2t)%. This gives a good measure o
t1. We choset155 sec for all iterations. The conditions fo
GS are not satisfied ifs r or br is negative and the receive
trajectories are unbounded, makingT very large. In systems
for which the expressions for the decay of error signals
not explicitly available, the choice oft1 would be based on
the largest conditional Lyapunov exponent for the particu

FIG. 4. Communication by the estimation of~a! s; ~b! r ; and~c!
b. The solid and the dashed lines indicate the transmitter and
ceiver parameters, respectively.
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choice of receiver parameters. To chooset2, we observed the
normalized standard deviation ofT for various receiver pa-
rameters. As an example, in Fig. 2, the receiver parame
are varied ass r516.011.3m, r r545.613.5m, and br
54.010.38m. The receiver parameters chosen at the star
the minimization routine correspond tom510. It can be seen
that there is not much dependence onm, andt2 was chosen
to be 25 sec for all iterations.

A pertinent question in the minimization will be to chec
whetherT has local minima where any minimization algo
rithm may get stuck. For the above chosen values oft1 ,t2,
we observedT, by numerical experiments, as a function
parameter difference defined as (Ds,Dr ,Db)5(s r ,r r ,br)
2(s t ,r t ,bt). With some curve fitting, subsequent mode
were found to be close to the observedT when only a single
parameter was varied. The transmitter parameters are fixe
(s t ,r t ,bt)5(16.0,45.6,4.0),

T~Ds,0,0!

5H 14.8~Ds22.46!136.41exp~2Ds/2.46!, Ds.0

20.55~Ds!3, Ds<0,

T~0,Dr ,0!51.93~Dr !2,

T~0,0,Db!5213.75~Db!2.

The variation of the cost function is monotonic as the m
match increases, a feature also observed when more than
parameter was varied. Figure 3 shows the plot of aver
percentage parameter mismatch against the iterations.
recovered parameter values at iteration 250 w
(16.001,45.599,3.999). The transmitter parameters h
clearly been recovered. Next, we tried to test the param
recovery for the chaotic signal masking application@9#,
where a chaotic carrier masks the low-power and low-p
speech signal. To make the error signal approximately in
pendent of the speech signal, it can be high-passed and
used for the evaluation ofT. The recovered parameters fo
the same initial receiver parameters as above w
(16.231,45.793,3.954). The parameter recovery for this c
was not as accurate as for the simple Lorenz system with
the speech signal, but it does enable an intelligible recov
of the speech signal. It was observed that the paramete
timation can be made more accurate if the minimization
the cost function is done at various time segments, instea
only one, and then taking the average value of the obtai
set of parameters.

A procedure for synthesizing self-synchronizing chao
arrays was developed in@13#, where lower-dimensional sys
tems are coupled by a linear system to build hig
dimensional arrays. We applied our scheme to the system
two coupled Lorenz oscillators synthesized in@13#. There are
six parameters characterizing the system~three for each os-
cillator!, which we attempted to extract by our algorithm
The linear system coupling the two systems was assume
be known to the receiver. The transmitt
parameters were fixed at (s1 ,r 1 ,b1,s2 ,r 2 ,b2)
5(14.0,44.0,3.5,15.0,55.0,4.5) and the initial values of
receiver parameters were (30.0,70.6,6.8,25.0,50.0,3
respectively. The convergence was slower th

e-
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56 1245BRIEF REPORTS
the simple Lorenz system~see Fig. 3! and the
recovered parameters at iteration 1200 w
(13.999,43.970,3.502,14.987,55.030,4.497). Recently, P
et al. @14# proposed synchronizing receivers for hyperchao
systems with a scalar transmitted signal. The transmitted
nal in the four-dimensional hyperchaotic Ro¨ssler system@14#
is of the form sinux11cosux3. Hence, the error signal fo
cost function evaluation is sinu(x12y1)1cosu(x32y3).
Our limited simulations show that parameter recovery
this system seems possible when theK-B space, as defined
in @14#, is known at the receiver@14#. This point is, however,
under consideration and the scope of future work.

This parameter recovery scheme has useful and inte
ing applications in communications. First, this can be used
a safeguard against any possible parameter drift with ti
Second, if the parameters to be tracked are such that they
be uniquely determined at the receiver~i.e., synchronization
with transmitted signals is sufficient to guarantee param
match, as is the case fors,r ,b of the Lorenz system!, then
each of such parameters can be used for information tr
e
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mission. The transmitter parameters can be varied slowly
that the receiver can accurately recover them. This can
referred to aschaotic multiplexingof various information
channels, where each parameter corresponds to a cha
Figure 4 illustrates the idea for the Lorenz system wh
(s t ,r t ,bt) are the parameters to be estimated, and hence
the three information channels. Note that the parameter
covery may not be accurate at the sudden changes, sinc
transmitter parameters are not constant over@ t2t1 ,t1t2#.
This can also be inferred at the receiver, since it will not
possible to minimizeT to zero. In any practical implemen
tation of this scheme, the computational speed at which
minimization of the cost function can be done will be a
important issue.

In conclusion, we have shown the receiver extracting
transmitter parameters and achieving synchronization by
iterative minimization of a defined cost function. This extra
tion of parameters can be used for multiplexing of vario
information signals.
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