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Tracking of synchronized chaotic systems with applications to communications
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In this paper, we examine the problem of the self-synchronizing chaotic receiver, extracting the parameters
of the transmitter system from the available transmitted signals and thereby achieving synchronization. Ascer-
taining the parameter equality will be an important issue in any practical implementation of a chaotic com-
munication system. We define a cost function whose iterative minimization allows the receiver to extract the
parameters. The method is illustrated for the Lorenz system and two coupled Lorenz systems. Last, we suggest
chaotic multiplexingas a possible application of the meth81063-651X%97)01707-9

PACS numbefs): 05.45:+b, 43.72+q

The self-synchronization property possessed by a class afansmitted signalsx, . . . xy,)? Carroll and Pecorgg] and
chaotic system§l1,2] has been of great interest recently, es-Kozlov et al.[7] address this problem for a single parameter
pecially due to its possible application to communicationsestimation by defining aontrol law, a nonlinear control sys-
[3]. The synchronization requires that the parameters charatem based on the error signals and of the form
terizing the transmitter dynamical system be closely matched )
in the receiver system. By synchronization, we mean that the &=h(X1=Y1, -« X~ Ym,&)-
receiver follows the transmitter exactly, termed identical
synchronizatior(1S) in [11]. Unless explicitly stated, we will Finding a functionh is specific to the transmitter-receiver
refer to IS as synchronization. In this paper, we illustrate s8ystem. We introduce a cost function whose iterative mini-
simple method that enables the receiver, initially ignorant ofmization accomplishes the same task, though with consider-
the transmitter parameters, to extract transmitter paramete@ble simplicity. The cost functioft is defined based on the
to achieve synchronization. The transmitter dynamical syseIror signals measurable at the receive(t)=x;(t)
tem, with the exception of the parameters to be estimated, is ¥i(t), (i=1,...,m), as
assumed to be known to the receiver. The signals available at

the receiver are the driving or transmitted signals that enable Ottt
it to synchronize with the chaotic signals evolving at the T(a,,t,tz)zz,l ft g;%(t)dt. (D)
transmitter if the parameters of the transmitter and the re-
ceiver match. The transmitted signals are stored over the intefvalt,,t
Let the transmitter be given by +1,] and the receiver is driven using this stored data, and the
i error signals are used for the evaluation of the cost function.
x=f(x,a), The transmitter parameters are assumed to be slowly varying
so that they can be assumed to be constant over the interval
where x,f(x)eR" or x=(x1,Xz,... X)) and f(X)=  [t—t, t+t,]. Brownet al. [8] define a measure of the syn-
(f1(2).f2(x), - .. .fa(x)), andf is such that a synchronizing chronization error based dfx—y|| and report its monotonic

receiver is possible. The vecteye RP is the parameter vec-  yariation for small parameter difference, but such a function
tor characterizing the system. Without loss of generality, lefs not measurable at the receiver due to nonavailability of all

the m transmitted signals b&;, ... xn,. The full dimen-  transmitter state variables. In the case of parameter match,
sional receiver is given by cost function(referred to hereafter af) is very close to zero
) due to synchronization; otherwise, it is a positive quantity.
Y=09(Xg, - - - Xm,Y,@), One can thus iteratively minimiZe over the receiver param-

) ) etersa,, andT becoming very close to zerdess than some
wherey,ge R" and the receiver parameter vectorjs= R?. ) is a simple test of convergence. It should be noted, how-
It is not necessary that the functigrbe a replica of. This  eyer, that, depending on the nature of the parameteisbe
may enhance synchronism for particular choiceg p4]. In - tracked, it is not necessary that=a be the only point
the case of parameter match, i&= &, the synchronization \here T becomes zero. This is because minimizatiorTof
is ensured, i.e||x—y|| —0 ast—c. This rate of synchro- ensures synchronization with the transmitted signals only.
nization may be quite fast for some systems, such as thgych a case is shown by the following example. The Lorenz

Lorenz system, where the rate is exponeritdl transmitter system is given by
The problem that we now address is: can the receiver
determine the transmitter parametexsfrom the available X1=01(Xo—X1);  Xo=TIX;—Xp—X1X3,
X3=X1X,— biXg 2
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FIG. 1. Two error signals for different receiver initial conditions ~ FIG. 2. The normalized standard deviation of the cost function

and unmatched parameters. as a function ot,.
Vi=0:(Ya—Y1); Yo=IX1—Yo—a1X1Y3; The timet, is chosen such that the synchronization with
the transmitted signals in the interjalt+t,] (due to mini-
Y3=ayX,Y,—b,ys. (3)  mization of T) ensures synchronization for all time, and
hence for accurate parameter recovery. We observe the nor-
In this case,T is a function of the error signad;(t)= malized standard deviation df (i.e., the ratio of standard

X1(t)—ya(t). Let (oy,r,,b)= (oy,r¢,by) and let @q,a,) deviation with its meanas a function of,, andt, is chosen

be the two receiver parameters modified uftilbbecomes such that this is small. The various readings for calculating
zero. It can easily be checked that f@ay=1/a;, wherea;  the standard deviation at a givép are taken by observing
#0, a change of variables g§ to a,y; gives back the fully T at varyingt. Such a choice of, works quite well. We
matched synchronizing receiver, and heificattains its glo- comment here that we are currently investigating whether
bal minima of zero at an infinite number of points one can chooseig at a large standard deviatigpossibly a
(a;,1/a;), although the parameters match only whap lower value than the above chojcand still recover the pa-
=a,=1. In such casesy remains indeterminate, though a rameters accurately. About the nature of iterative algorithm,
minimization of T will ensure synchronization with the since the derivatives of the cost function are not directly
transmitted signals, which may be sufficient for applicationsavailable, one needs to choose a method where only the
such as chaotic signal masking or chaotic digital communifunction evaluations are required. We used the downhill sim-
cation[9]. plex method in multidimensionsl 2].

We now comment on the various timest, ,t,, involved We now illustrate the method for the Lorenz transmitter-
in definition (1). The selection of timd is arbitrary. How-  receiver systenfisee Eqs(2) and (3)], where it is assumed
ever, it is assumed that the transmitter system has come otlata;,a,=1 and (,r;,b,) are the three parameters to be
of its transient due to its arbitrary initial conditions and re- estimated. First, we show th@tattains its global minima of
sides on its attractor in the intervel—t,,t+t,], a legiti-  zero only in the case of parameter match, rather than an
mate assumption under which synchronization may occur. linfinite number of points, as in the case of estimation of
is desired thal be independent of the receiver state variablea, ,a,. From the minimization off, x,=Yy,;, and hencex,
values at time {—t,) or the initial conditions, which are set =y,; thus, y,=(o,—o)X1/0,+oX,/0, . Differentiating
arbitrarily whenT is evaluated. In case of matching param-both sides, we get[r,—o(/o,+(o,—0o)(or—1)/0o,
eters, all error signals;(t), due to difference in the trans- +ox3/0,—y3]X;=(0,— 0y oX,/o,. Now it is possible to
mitter and receiver state variables at time-€;), die down
due to synchronization. Though the error signals will not
become identically zero for mismatched parameters, they 120
may, however, become independent of the receiver initial
conditions if timet, is chosen to be large. This is essentially
due to the phenomenon of generalized synchronizatgs)
proposed by Rulkoet al.[10], where, instead of following
the transmitter exactly, the receiver follows its fixed image,
i.e.,y=H(x), whereH is nonlinear in general. The necessary
and sufficient conditions for GS, given by Kocarev and Par-
litz [11], are that the conditional Lyapunov exponents are all
negative, or alternately that a Lyapunov function can be de- 0
fined for the mismatched receiver, the latter approach being
the more direct way. Thus, if these conditions are satisfiec Iterations
for the receiver parameters, the error signals, and hé&nce
become very nearly independent of the receiver initial con- F|G. 3. The average percentage parameter mismatch as a func-
ditions at time {—t,) due to synchronization to a fixed im- tion of iterations for(a) the Lorenz system antb) two coupled
age of the transmitter. Lorenz systems.
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18 . . . . . choice of receiver parameters. To chobgeve observed the
175 F . normalized standard deviation @f for various receiver pa-
17 | - rameters. As an example, in Fig. 2, the receiver parameters
165 | : . are varied aso,=16.0+1.3m, r,=45.6+3.5m, and b,
b 16 : g =4.0+0.38n. The receiver parameters chosen at the start of
155 |- J SN . the minimization routine correspond o= 10. It can be seen
15 8 that there is not much dependencempandt, was chosen
145 - . to be 25 sec for all iterations.
14 ' ' : : ' A pertinent question in the minimization will be to check
0 fop 20 G 400 50 600 whetherT has local minima where any minimization algo-
rithm may get stuck. For the above chosen values; df,
47 - n : . . we observedr, by numerical experiments, as a function of
46.5 - i parameter difference defined aAd,Ar,Ab)=(o,,r,,b,)
w L . 1 —(oy,ry,by). With some curve fitting, subsequent models
o | 1] were found to be close to the observEdvhen only a single
-. 455 -t : | T parameter was varied. The transmitter parameters are fixed at
45 —L = (o¢,ry,by)=(16.0,45.6,4.0),
45 ' I T(A0,0,0
440 100 200 300 400 500 600 14.8Ao—2.46 +36.41exp—Ao/2.46, Ac>0
(b) Time(sec) =
—0.55A0)3, Ao<0,
4.4 T T T T T
an b . . T(0,Ar,00=1.93 Ar)?,
. 4 : — . T(0,0,Ab)=213.75Ab)>.
58 1 The variation of the cost function is monotonic as the mis-
36 T D . match increases, a feature also observed when more than one
parameter was varied. Figure 3 shows the plot of average
34 00 200 30 200 300 0o percentage parameter mismatch against the iterations. The
{© Time(sec) recovered parameter values at iteration 250 were

(16.001,45.599,3.999). The transmitter parameters have
FIG. 4. Communication by the estimation@j o; (b) r; and(c) clearly been recovered. Next, we tried to test the parameter
b. The solid and the dashed lines indicate the transmitter and rerecovery for the chaotic signal masking applicatif,
ceiver parameters, respectively. where a chaotic carrier masks the low-power and low-pass
. ] speech signal. To make the error signal approximately inde-
choose a point on the chaotic attractor such #1a0 and  pendent of the speech signal, it can be high-passed and then
x;#0, where the right-hand siged, implying that o ysed for the evaluation 6f. The recovered parameters for
=oy. Hence, the left-hand sige0 for all x;, SOy;=X3  the same initial receiver parameters as above were
+r.—ry. By differentiating, we get W, —b)Xs=  (16.231,45.793,3.954). The parameter recovery for this case
b,(r¢—r,). For this to hold for allxs, (r,,b;)=(r¢,by). was not as accurate as for the simple Lorenz system without
Let (oy,ry,by) =(16.0,45.6,4.0) and the initial choice of the speech signal, but it does enable an intelligible recovery
the receiver parameters be(r,,b;) =(29.0,80.6,7.8). Fig-  of the speech signal. It was observed that the parameter es-
ure 1 shows the error signal(t) for two largely different  timation can be made more accurate if the minimization of
receiver initial conditions. The transmitter state variable valthe cost function is done at various time segments, instead of

ues at time {(-t;) are fixed at %;,X2,X3)=  only one, and then taking the average value of the obtained
(—12.1,5.3,59.8) and the two receiver initial conditions areset of parameters.
(Y1.Y2,Y3)=(50,50,50),¢ 50,—50,—50). Lety’ andy” be A procedure for synthesizing self-synchronizing chaotic

the two receiver trajectories emanating from different initial arrays was developed [13], where lower-dimensional sys-
conditions at time {—t;). By an analysis similar to the one tems are coupled by a linear system to build high-
in the appendix of5], it can be shown that these two trajec- dimensional arrays. We applied our scheme to the system of
tories approach each other at least exponentially and thaivo coupled Lorenz oscillators synthesized 113]. There are
lyi—v7 decreases at least as max six parameters characterizing the syst@éhree for each os-
{O(e""),0(e PY),0(e Y}. This gives a good measure of cillator), which we attempted to extract by our algorithm.
t,. We choset; =5 sec for all iterations. The conditions for The linear system coupling the two systems was assumed to
GS are not satisfied i, or b, is negative and the receiver be  known to the receiver. The transmitter
trajectories are unbounded, makilgvery large. In systems parameters were fixed at of(,r{,bq,0,,r,,b,)

for which the expressions for the decay of error signals are=(14.0,44.0,3.5,15.0,55.0,4.5) and the initial values of the
not explicitly available, the choice df would be based on receiver parameters were (30.0,70.6,6.8,25.0,50.0,3.0),
the largest conditional Lyapunov exponent for the particularespectively. The convergence was slower than
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the simple Lorenz system(see Fig. 3 and the mission. The transmitter parameters can be varied slowly so
recovered parameters at iteration 1200  werethat the receiver can accurately recover them. This can be
(13.999,43.970,3.502,14.987,55.030,4.497). Recently, Pengferred to aschaotic multiplexingof various information

et al.[14] proposed synchronizing receivers for hyperchaoticchannels, where each parameter corresponds to a channel.
systems with a scalar transmitted signal. The transmitted sigrigure 4 illustrates the idea for the Lorenz system where
nal in the four-dimensional hyperchaotic $&ter systenil4] (4, r, b,) are the parameters to be estimated, and hence are
is of the form simx,; + cosfx;. Hence, the error signal for the three information channels. Note that the parameter re-
cost function evaluation is sifx;—Yy1)+cos9(X3—Ys).  covery may not be accurate at the sudden changes, since the
Ogr limited simulations _show that parameter recovery fory ansmitter parameters are not constant dieft,,t+t,].

this system seems possible when K8 space, as defined 1is can also be inferred at the receiver, since it will not be
in [14], is known at the receivdfl4]. This point is, however, ) cqipie 1o minimizeT to zero. In any practical implemen-

under_ consideration and the scope of future work, . ttation of this scheme, the computational speed at which the
This parameter recovery scheme has useful and interest-. . .~ . . .
minimization of the cost function can be done will be an

ing applications in communications. First, this can be used s ortant issue
a safeguard against any possible parameter drift with time. P S : .
In conclusion, we have shown the receiver extracting the

Second, if the parameters to be tracked are such that they can : L o
be uniquely determined at the receivee., synchronization transmitter parameters and achieving synchronization by an

with transmitted signals is sufficient to guarantee parameteiferative minimization of a defined cost fur!ction. This extrac-
match, as is the case for,r,b of the Lorenz systemthen  ton of parameters can be used for multiplexing of various
each of such parameters can be used for information trand?formation signals.
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